Oncological miR-182-3p, a Novel Smooth Muscle Cell Phenotype Modulator, Evidences From Model Rats and Patients.

نویسندگان

  • Lan Sun
  • Yongyi Bai
  • Rui Zhao
  • Tao Sun
  • Ruihua Cao
  • Fuyu Wang
  • Guorong He
  • Wen Zhang
  • Ying Chen
  • Ping Ye
  • Guanhua Du
چکیده

OBJECTIVE Vascular smooth muscle cell (VSMC) phenotype change is a hallmark of vascular remodeling, which contributes to atherosclerotic diseases and can be regulated via microRNA-dependent mechanisms. We recently identified that asymmetrical dimethylarginine positively correlates to vascular remodeling-based diseases. We hypothesized that asymmetrical dimethylarginine induces smooth muscle cell (SMC) phenotypic change via a microRNA-dependent mechanism. APPROACH AND RESULTS Microarray analysis enabled the identification of downregulation of miR-182-3p in asymmetrical dimethylarginine-treated human aortic artery SMCs. The myeloid-associated differentiation marker (MYADM) was identified as the downstream target of miR-182-3p and implicated to contribute to miR-182-3p knockdown-mediated SMC phenotype change, which was evidenced by the increased proliferation and migration and reduced expression levels of phenotype-related genes in human aortic artery SMCs through the ERK/MAP (extracellular signal-regulated kinase/mitogen-activated protein) kinase-dependent mechanism. When inhibiting MYADM in the presence of miR-182-3p inhibitor or overexpressing MYADM in the presence of pre-miR-182-3p, human aortic artery SMCs were reversed to the differentiation phenotype. In vivo, adeno-miR-182-3p markedly suppressed carotid neointimal formation by using balloon-injured rat carotid artery model, specifically via decreased MYADM expression, whereas adeno-miR-182-3p inhibitor significantly promoted neointimal formation. Atherosclerotic lesions from patients with high asymmetrical dimethylarginine plasma levels exhibited decreased miR-182-3p expression levels and elevated MYADM expression levels. CONCLUSIONS miR-182-3p is a novel SMC phenotypic modulator by targeting MYADM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-182 prevents vascular smooth muscle cell dedifferentiation via FGF9/PDGFRβ signaling

The abnormal phenotypic transformation of vascular smooth muscle cells (SMCs) causes various proliferative vascular diseases. MicroRNAs (miRNAs or miRs) have been established to play important roles in SMC biology and phenotypic modulation. This study revealed that the expression of miR‑182 was markedly altered during rat vascular SMC phenotypic transformation in vitro. We aimed to investigate ...

متن کامل

MiR-135b-5p and MiR-499a-3p Promote Cell Proliferation and Migration in Atherosclerosis by Directly Targeting MEF2C

Proliferation and migration of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are critical processes involved in atherosclerosis. Recent studies have revealed that microRNAs (miRNAs) can be detected in circulating blood with a stable form and the expression profiles differ in many cellular processes associated with coronary artery disease (CAD). However, little is known about ...

متن کامل

Downregulation of HMGB1 by miR-103a-3p Promotes Cell Proliferation, Alleviates Apoptosis and Inflammation in a Cell Model of Osteoarthritis

Background: MiR-103a-3p is a small non-coding RNA and has been reported to be involved in osteogenic proliferation and differentiation, but the role of miR-103a-3p in human osteoarthritis (OA) remains unclear. Objectives: In this study, we aimed to explore its function and molecular target in chondrocytes during OA pathogenesis. Materials an...

متن کامل

Upregulation of miR-126-3p promotes human saphenous vein endothelial cell proliferation in vitro and prevents vein graft neointimal formation ex vivo and in vivo

Poor long-term patency of vein grafts remains an obstacle in coronary artery bypass grafting (CABG) surgery using an autologous saphenous vein graft. Recent studies have revealed that miR-126-3p promotes vascular integrity and angiogenesis. We aimed to identify the role of miR-126-3p in the setting of vein graft disease and investigate the value of miR-126-3p agomir as a future gene therapy in ...

متن کامل

Mir-22-3p Inhibits Arterial Smooth Muscle Cell Proliferation and Migration and Neointimal Hyperplasia by Targeting HMGB1 in Arteriosclerosis Obliterans.

BACKGROUND Aberrant vascular smooth muscle cell (VSMC) proliferation and migration contribute to the development of vascular pathologies, such as atherosclerosis and post-angioplasty restenosis. The aim of this study was to determine whether miR-22-3p plays a role in regulating human artery vascular smooth muscle cell (HASMC) function and neointima formation. METHODS Quantitative real-time PC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 36 7  شماره 

صفحات  -

تاریخ انتشار 2016